×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

RANS approaches to modeling convective heat transfer in tube bundles in two-dimensional and three-dimensional settings

Abstract

RANS approaches to modeling convective heat transfer in tube bundles in two-dimensional and three-dimensional settings

Hayrullin A.R, Haibullina A.I.

Incoming article date: 03.11.2024

This paper discusses the influence of the turbulence model selection in predicting heat transfer in tube bundles in two- and three-dimensional settings. Numerical studies were performed for in-line and staggered tube bundles using Ansys Fluent software with three RANS turbulence models (k-ω SST, RSM EWT, and RNG k-ε) and a laminar solver. The tube lengths l in three dimensions were 0.5D and 3D, with a fixed tube diameter D. The Reynolds number Re ranged from 100 to 2900. The results showed that the turbulence model selection affects the qualitative flow pattern in tube bundles, with two-dimensional structures predominating in the flow regardless of the turbulence model selection. Therefore, the tube length has virtually no effect on the ability to predict heat transfer intensity. It is shown that when using the laminar solver, the effect of the bundle tube length can be significant depending on Re and the bundle layout. Good agreement with experimental data is obtained for the RSM EWT and RNG k-ε EWT models. For a staggered bundle, when choosing the k-ω SST model, satisfactory agreement with experimental data is observed, while the heat transfer of the in-line bundle is significantly underestimated. The use of the laminar solver in a steady-state formulation is justified for a pronounced laminar flow, at Re < 1000 with a further increase in Re, it is necessary to use a unsteady formulation with sufficient time and mesh resolution.

Keywords: convective heat transfer, in-line tube bundle, staggered tube bundle, computational simulation, turbulence modeling