ivdon3@bk.ru
Исследование было направлено на изучение свойств стеклобазальтовых композитных труб, в частности, на анализ связи между фрактальными размерами структуры, составом и механическими свойствами. Были проведены физические эксперименты для оценки свойств стеклопластиковых и стеклобазальтопластиковых труб.Испытания включали измерение прочности на растяжение, модуля упругости, устойчивости к разрушению, прочности на изгиб и других механических характеристик. Выполнен фрактальный анализ ровинга и эпоксидного связующего на микроструктурном уровне для оценки влияния структуры на механические свойства. На основе прогностического моделирования физико-механических свойств стеклобазальтовых труб был определен оптимальный диапазон свойств. Диапазон определяется следующими технологическими параметрами: содержание ровинга 68–74%, диаметр базальтового волокна 7–12 мкм и содержание эпоксидного связующего 21–27%. В рамках данного подхода предсказано производство труб с целевыми свойствами: предел прочности на растяжение, предел прочности на сжатие, и модуль упругости.
Ключевые слова: фрактальное моделирование, микроструктура, волокна матрицы, стеклобазальтопластик, композитный материал, прогнозирование, прочность, фрактальная размерность, неоднородность, механические свойства, композитная труба, стекловолокно, базальт
Целью исследования было изучение структуры стеклобазальтовых композитных труб и исследование взаимосвязи между их статистическими размерами Реньи и физико-механическими свойствами. Были проведены физические эксперименты для измерения и анализа упругости стеклобазальтовых композитных труб. В рамках экспериментов проводились испытания модуля упругости и других механических характеристик. На микроуровне был применён фрактальный анализ для оценки влияния структуры волокнистой матрицы на физико-механическое поведение труб. В работе рассматривалась возможность моделирования микроструктуры стеклобазальтовых композитных труб с использованием 3D фрактального анализа. Установлена корреляция между спектром мультифрактальных размеров (D-200, D0, D1, D2, D200), неоднородностью волокнистой матрицы f(α) и упругими свойствами (модулем Юнга). Для полученных фрактальных моделей, прогнозирующих модуль Юнга, коэффициенты корреляции (R2) составляют 0,95 для D0, 0,92 для D1, 0,90 для D2, 0,82 для D-200 и 0,68 для f(α). Эти результаты могут быть использованы для быстрой оценки модуля Юнга с помощью оптической микроскопии и фотомикрографий микроструктуры.
Ключевые слова: фрактальное моделирование, микроструктура, физико-механические свойства, разработка материалов, стеклобазальтовое волокно, полимерные трубы, прогнозирование, интерфазные границы, механические свойства, фрактальная размерность, неоднородность